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Abstract

In view of the present interest in capillary electrochromatography (CEC), theories dealing with electroosmotic flow (EOF)
in porous media are reviewed with particular regard to the use of packed capillaries in CEC. Two of the models found in the
pertinent literature are applicable to CEC and give simple analytical solutions. The first of the two models is based on von
Smoluchowski’s work as adapted and extended by Overbeek. It deals with EOF through packed capillaries under conditions
of low electric field strength where the EOF varies linearly with the field strength because there is no polarization of the
double layer. Overbeek’s model originally developed for porous media of infinite dimensions was modified in an attempt to
account for the wall effect that assumes importance in the packed capillary columns used in CEC. The second model
proposed by Dukhin and his coworkers predicts EOF of at least an order of magnitude higher than that expected by classical
theories. This “‘electroosmosis of the second kind” is believed to occur in columns packed with conductive particles like ion
exchangers at high electric field strengths when the double layer is polarized and the EOF becomes a non-linear function of
the applied voltage. Conditions necessary for electroosmosis of the second kind are likely to arise upon the further
development of CEC when further enhancement of the speed of analysis is brought about at electric field strength higher than
that employed at present. © 1997 Elsevier Science BV.
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1. Introduction

Capillary electrochromatography (CEC) has the
potential to become another high-performance liquid
chromatographic technique that employs packed
capillary columns and high electric field so that the
mobile phase is driven by electrosmotic flow' (EOF)
and is carried out in apparatus similar to that used in
CZE. The mixed separation mechanism of CEC is
borrowed from both HPLC and CZE [1]. The history
of CEC could be traced to almost 60 years back
when Strain [2,3] applied electric field across an
adsorption column to demonstrate higher selectivity
due to combination of electrophoretic and chromato-
graphic separation forces. Almost thirty years later in
1974, Pretorius et al. suggested the use of EOF as
“pumping mechanism’’ alternative to pressure driven
flow in order to expand the scope of the then
newfangled technique of HPLC [4]. The viability of
CEC in packed capillary columns was demonstrated
by Jorgenson and Lukacs in 1981 [5] and examined
in some detail by Knox and Grant in 1987 [6].
Recently several research groups have made contri-
butions to the further development of this separation
technique [7-21].

One of the characteristic features of CEC is the
usage of high electric field across the column in lieu
of the high column inlet pressure utilized traditional-
ly in HPLC. This offers a simple means to attain in
capillary columns packed with very small particles,
flow rates so high that they would require a prohibi-
tively high pressure drop in HPLC. In order to
exploit the potential of CEC, control and optimi-
zation of electrochromatographic conditions to gen-
erate high EOF velocities are of the utmost impor-
tance. Theoretical understanding of the EOF and the
associated transport phenomena in porous media
such as packed columns in CEC would require an
exact solution of the flow field in porous media
under conditions prevalent in CEC by simultaneously
solving the Poisson-Boltzmann and Navier—Stokes
equations, a daunting task despite recent expeditious
advancements in computing power.

The literature on electrokinetic phenomena is very
large and mainly addresses theoretical problems. Yet,

'For the sake of brevity the words “‘electrosmosis” and ‘‘elec-
trosmotic”’ suggested by von Smoluchowski [30] are used here.

only a scant number of papers dealing with EOF in
porous media has been found. The goal of the
present work is to review two of the models found
on this topic that yield simple but relevant analytical
solutions. They deal with the hydrodynamics and the
enhancement of EOF and are presented in a form
adapted to the CEC environment. The first model is
based on prior work of Overbeek and Wijga [22-24]
which is rooted in the flat plate model by von
Smoluchowski, and deals with the hydrodynamics of
EOF through beds packed with non-conducting
particles at electric fields low enough so that there is
no polarization of the double layer. Since in the
works of Pretorius et al. [4], Jorgenson and Lukacs
[5] as well as by Knox and Grant [6,8] this mode]
has been applied to CEC, present thinking on the
generation and the magnitude of EOF in CEC is
largely determined by this model. The second and
more recent model which departs from the classical
Smoluchowskian view, originates from Dukhin’s
group [25-29]. It deals with “‘electrosmcsis of the
second kind” that occurs when the particles are
conducting and the electric field is high enough to
cause polarization of the double layer.

In view of the great present interest in CEC, we
hope that this review reveals the complexity of the
electrokinetic phenomena underlying EOF in porous
media and will stimulate the experimental and
theoretical work necessary for an understanding of
the physicochemical basis of CEC and to develop
this technique into a powerful analytical tool.

2. The von Smoluchowski equation

In his treatment of liquid movement adjacent to a
flat, uniformly charged surface under the influence of
electric field acting parallel to the interface, von
Smoluchowski [30] examined the balance between
viscous and electrical forces and arrived at the
following expression for u, the EOF velocity along
the surface,

Uy, = — ¢}

where, ¢ is the dielectric constant of the medium, &,
is the permittivity of the vacuum, E is the applied
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electric field and 7 is the viscosity of the bulk
solution. ¢, is the zeta potential, defined as the
potential at a hypothetical ‘plane of shear® [23].

Von Smoluchowski also suggested that an equa-
tion similar to Eq. (1) may hold true for the case of a
porous plug or membrane, regarding them as a
collection of Poiseuille tubes [31]. Several treatments
for EOF in capillaries are based on similar assump-
tions as that by von Smolukhowski.

3. Overbeek’s model for EOF in porous media

The following analysis is based on Overbeek and
Wijga's work [22-24] and is valid for porous/non-
porous packing particles of any arbitrary shape. The
assumptions are that the particles be non-conducting,
have uniform zeta potential and a double layer thin
compared to the radius of the pores in the plug.
Overbeek upon integration over the whole interstitial
volume of the bed obtained the following expression
for the average velocity

V.

ef

< >——1—J dV_—%jEdV 2
uP - VC uP ¢ 7"/c c ( )
Ver

where, g“p is the zeta potential at the surface, V, and
V. are the total column volume and the volume of
the interstitial space, respectively. The integration is
performed over V,; only since flow is only in the
interstices. u,, is electrosmotic velocity that is gener-
ated locally at the packing surface and is given by an
expression similar to Eq. (1), which describes
Smoluchowski’s equation for EOF generated at the
wall, as follows

eg, i E
u,= — ——n— 3)

For the current, j, the following relationship holds
e
j=a*E=—V—"fEdVC (4)
¢ Vuf

where, ¢* and o, are the conductivities of the
packed column and the open tube, both filled with
the electrolyte solution, respectively. Combination of
Eq. (2) and Eq. (4) yields the average velocity as

e, E (o*
<up>=—————<—> (3)

n a,

with the conductivity ratio, o*/g,, that is readily
determinable experimentally.

Eq. (5) was derived by Overbeek [23] to describe
EOF in a porous medium without boundaries. Ac-
cording to experimental findings [32], in CEC with
packed capillaries the contribution of the capillary
inner wall, which may be neutral or charged, to the
EOF cannot be ignored. In order to account for the
“wall effect” the Overbeek model will be extended
to evaluate the contributions of the wall and the
packing to EOF under conditions employed in CEC.

3.1. Charged capillary wall and neutral packing

It is assumed that the EOF is generated only at the
charged wall and the packing particles are un-
charged. The flow can then be visualized in the form
of very thin annuli of liquid in the packed column.
Each annulus faces a force in the forward direction
(the direction of EOF) from the annulus enveloping
it and a force in the backward direction from the
annulus inside it. The inertia terms and the compres-
sibility of the fluid are assumed to be negligibly
small. The net viscous force, F_, on such an annulus
of unit volume in the absence of any particles is
given by

durw

F.= r dr (r dr > (6)

where, r is the radial coordinate and u,, is the local
velocity in the axial direction.

In such a column with charged tube wall and
uncharged packing, the flow velocity would be a
rapidly fluctuating function of radial position with
zero value at the surface of the uncharged particle
and maximum in the intraparticular space. Hence, the
velocity under consideration, u,,, is more like a
volume average velocity. Besides the viscous forces,
the fluid in the shell also experiences a drag force
from the packing particles in the shell. The total drag
force, F,, offered by spherical packing particles of
diameter d,, that are located far enough from each
other to act like isolated spheres, is given by the
product of the drag force by an isolated sphere and
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the number of spherical particles in a shell of unit
volume as follows

1—¢
F,=(6mnd u )| —— 7
a = (6 P”‘“)(47rd3/3) 7

where ¢, is the total porosity of the column. Since in
packed columns the particles are in close contact
with each other, the actual drag force is different
than that given by Eq. (7). This is corrected for by
introducing the dimensionless packing parameter, a,
which depends on the structure of packing and shape
of the particles and should be easily determinable
from experimental data. Performing the balance
between the viscous and the drag forces and sim-
plifying the equations we have that

1 d du,, 9 ol — g, B’
Fe\TE )T g g ®

where 8 is another dimensionless constant that is
readily evaluated if @ and &, are known from the
following relationship

_ fa(l — &)
B = 3\/—7—. )

The boundary conditions for solving the differential
equation as given in Eq. (8) are

durw_ _ 0
ar =0 atr=0 (10)
and

u., =u, atr=R (11)

where, u,, is the EOF velocity at the wall as given by
Eq. (1). Eq. (11) simply reflects no slip condition at
the plane of shear that is very close to the tube wall
for thin double layers.

Solution of the system of Eqs. (8)-(11) for the
potential distribution can be found in the literature
[33,34] and written for the local velocity as

1,(Brid)
u., Zu“,[m:l (12)

where, I, is the Bessel’s function of the zeroth order.
For Br/d, greater than 3.5, which is generally the

case, the zeroth order Bessel’s function can be
approximated by

,Br/dp

1,(Brid,) ZW (13)

which in turn can be substituted back into Eq. (12) to
give the simplified solution as

\2mBR/d, ]

BRI,

Pl
ul’W = uW
\2mBrid,

= uw(\@)eﬁ“*’“’dr. (14)

Eq. (14) for the region close to the wall is illustrated
in Fig. 1. The flow velocity is maximum at the plane
of shear and then decays quickly as we move away
from the wall. This should not be surprising as in a
column packed with uncharged particles, EOF is
generated at the tube wall and the interior of the tube
contributes only the drag resistance. It should be
noted that the flow velocity falls to 70% of its
maximum value as soon as we move a distance of
one particle diameter away from the column wall.

The average velocity in the column for the above
case can be easily determined using the velocity
profile given in Eq. (17) and accounting for the
tortuosity in the bed as follows

Packing particle

Electrosmotic
velocity

%0

Fig. 1. Schematic illustration of loci of the wall effect where EOF
decays in the case of charged tube wall and uncharged packing
particles.
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u,>=—"——>\—
! ar’ a,

*
=uw(5—>(2—~2—>fr10(ﬁr/d ydr  (15)
a, )\ R’L(BRId,) ) I P

In order to simplify Eq. (15) we need to use the
property that the zeroth and first order Bessel’s
functions are related by

BRId,
BR
j rl (rydr= PR 1,(r) (16)
0 P

and for Br/d, greater than 3.5 by

1(Brid,)=1,(Brld) (17)

Using Egs. (15)-(17) and performing some algebraic
simplifications we get the expression for the average
velocity as

<un> =02 )52
u,,> =u, Uh><,BR/dp>’ (18)

Eq. (18) suggests that the average velocity in the
packed column varies linearly with the dimensionless
particle diameter, dp/R.

3.2, Extended Overbeek’s model to CEC

Under conditions employed in CEC, the EOF is
generated not only at the capillary wall but also at
the surface of the packing. According to Overbeek
[22-24], the flow through a column packed with
charged particles is visualized as flow through
several parallel tubes with the zeta potential of the
wall being equal to that of the particles. The velocity
in each of such tubes is given by the von
Smoluchowski’s equation which was adapted by
Overbeek to arrive at Eq. (5) and thus account for
the tortuosity and other characteristics of the porous
medium by the conductivity ratio.

When the zeta potential of the wall is the same as
the packing ({, =¢,), the velocity profile should be
flat according to Overbeek’s expression in Eq. (5).
For the case when the zeta potentials at the tube wall
and the particle surface are not equal, the total

velocity could be evaluated by adding a term to
Overbeek’s velocity expression to account for the
wall effect. This term would be given for the local
and average velocities by Eq. (14) and Eq. (18) with
the zeta potential of the wall being replaced by the
“excess zeta potential’” on the wall (£, —¢,) that is
responsible for the wall effect, i.e.

_ (1 _Eg) .
U, =u,, Z u,

=up[l +<\/§)e"""*”dv(—§i— 1)] (19)

p

where, u_ is the net local velocity from both contri-
butions. Fig. 2 illustrates the effect of the magnitude
of the excess zeta potential on the radial profile of
the EOF velocity. The plots show that the wall effect
is limited to a narrow annulus at the wall that
increases in width with the magnitude of the excess
zeta potential.

The effect of particle diameter on the radial flow

3 T T T T T
>, 2.5 EOF
= - faster at
e 2° the wall
© ]
> . 1.5 No wall effect
w2 F
FIOBELY:
2= 0.5
= r
S of EOF
E i lower at
2 -0.5 F_ the wall
g -1 " 1 L " A 1 I L 1 A " L
0 0.2 0.4 0.6 0.8 1
Dimensionless Radial Position
r’'R

Fig. 2. Graphs illustrating the hypothetical radial flow distribution
according to Eq. (19) when both the tube wall and the packing are
charged. The ratio of zeta potentials of the wall and the particles
in the packing ({,/¢,) is the parameter. The velocity is made
dimensionless by using the local electrosmotic velocity at the
particle surface as the reference. Conditions; R=50 pum; =04
and 4,=5 pm.
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Fig. 3. Graphs illustrating the hypothetical radial flow distribution
according to Eq. (19) when both the tube wall and the packing are
charged with the particle diameter as the parameter. The velocity
is dimensionless by using the local electrosmotic velocity at the
particle surface as the reference. Conditions; R=50 pm; £=0.4
and {, =2 .

profile is illustrated in Fig. 3 for certain typical cases.
It is seen that the wall effect increases with the
particle diameter of the packing for fixed tube
diameter. This is because with increasing particle
diameter, the area of the one particle diameter thick
annulus relative to the total cross-sectional area
increases and so the effect becomes more evident.

By integrating Eq. (19) over the bed volume we
obtain the expression for the average velocity in the
column as

{
<u,> = <urw>(1—z"— + <u,>

=<up>[1+(%)(%>(%—l>]. (20)

The variation of the average velocity as a function of
the particle diameter is illustrated in a dimensionless
graph with the excess zeta potential as the parameter
in Fig. 4. As mentioned above, the wall effect would
be palpable only in the case when the two zeta
potentials are unequal and then increase with the

> 2
: T T r—*~cl 3 g T ]
3] EOF ! =
= fasterat | ¢ p \ 1
; the wall ¢, =2¢

1.5 \
S p
oA
P Y
53

1

« \’\,.
w = T
gV “/Z
€ 0.5] ¢, =0 T
S Ot EOF o ~
7 lower at 1
s the wall Cm =-5
E
-

O i " 1 " i i 1 A " 2 1 " n ]
0 0.05 0.1 0.15 0.2
Dimensionless Particle Diameter
dp/R

Fig. 4. Illustration of the effect of the packing particle diameter on
the average flow velocity for the case of charged tube and
packing. For making the velocity dimensionless the average
electrosmotic velocity defined by Overbeek, cf. Eq. (5), was used
as the reference. Conditions; R=350 wm and £=0.4.

magnitude of the difference. As the particle diameter
increases, the wall effect increases too.

4. Dukhin’s model of electrosmosis of the
second kind

Dukhin’s group [25-29] proposed a model for
“electrosmosis of the second kind”, that is char-
acterized by an unexpectedly high EOF velocity
when the particles have higher conductivity than the
electrophoretic medium. Dukhin’s experiments with
ion exchanger particles under sufficiently high elec-
tric field strengths demonstrated the generation of
high EOF that was explained by the induction of
bulk charge in the surrounding electrolyte solution.

This explanation is based on the assumption that
the tangential and the normal component of the
electric field at the surface of a curved ion exchanger
as shown in Fig. 5, induces bulk charges through
different mechanisms as described in the following
two sections.
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E,

Particle

Diffuse Laye/

Fig. 5. Schematic illustration showing the normal and tangential
components of the electric field acting on the diffuse layer at a
charged curved surface.

4.1. Differential permeation of the particle by the
counterions

Fig. 6 shows the effect of the normal component
of the electric field, E,, across a negatively charged
ion-exchanger, the surface of which is permeable to
the counterions, immersed in an electrolyte solution.
The negative ions are repelled by the negatively
charged surface and therefore their diffusive flux
from the bulk solution toward the surface is counter-
balanced by their electromigration in the opposite
direction [25] so that
—D‘——-—dcdx(x) —D‘c‘(x)%d‘gix) =0 @1
where, e is the elementary charge, k is the
Boltzmann constant, T is the absolute temperature of
the electrolyte, ¢ is the electrical potential, D~ is the

I : double layer
I : bulk charge
layer
H1I: electroneutral v
diffusion layer >
IV : bulk solution

X x*
Fig. 6. Induction and location of a bulk charge layer formed by the
selective permeation of counterions at flux j, through the ion
exchanger surface as a result of the normal component of the
electric field.

diffusivity of the negative ions and ¢~ is their
concentration as a function of the distance from the
surface, x, as shown in Fig. 6.

Upon integration, Eq. (21) yields the following
expression for the concentration of the negative ions
as [25,27]

€

C_(x) —_ coe‘ﬁ [$(x)— Pix#¥)] (22)

where, x*¥, as shown in Fig. 6, marks the outer
boundary of the zone of concentration polarization
where the concentration of the negative ions equals
the bulk concentration, i.e. ¢ =c_.

Since the positive ions diffuse through the nega-
tively charged ion-exchanger particle, the equation
for the conservation of charge has to include the flux,
ji, so that we obtain

e dy(x) |

L dT@ e _
kT dx It

D c’(x) (23)
The integrated form of Eq. (23) gives the following
expression for ¢’

e

o — ik
C+(x)=e kT[lﬂ(") Yx¥)]

R
X c,— # J eﬁ [§r(x)~ (x*)} dx (24)
0

which is different from Eq. (22) for ¢~ because ¢ is
a function also of j,+ [25,27].

In Fig. 6, ¢~ and c¢* are plotted against x
according to Eq. (22) and Eq. (24) to show the bulk
charge formed in the region between the double layer
and the electroneutral diffusion layer, since electro-
neutrality is not obeyed in the diffuse part of the
double layer. In very high fields, the bulk charge
layer can be much thicker than the double layer or
the diffusion layer, yet thinner in comparison to the
particle. The induced bulk charge density, p, was
expressed by Dukhin as

PO =elc™ (W, j1) — ¢ W)l (25)

4.2. Tangential movement of ions in the diffuse
layer

According to Dukhin, the tangential component of
the field also contributes to induction of the bulk
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Double layer

Induced
bulk charge

Fig. 7. Induction and location of a bulk charge layer formed by the
tangential flow of the diffuse layer with flux j at the surface of a
curved ion exchanger as a result of the tangential component of
the electric field.

charge according to a mechanism different from that
discussed above. As illustrated in Fig. 7 for a
charged spherical particle immersed in an electrolyte
solution under the influence of the tangential com-
ponent of the electric field, excess of counterions in
the diffuse layer causes a net tangential flow of
counterions, j2+ , that acts as another sink for the
counterions and enhances bulk charge formation.

4.3. Enhancement of EOF

A particular feature of Dukhin’s model is the
“electroosmotic whirlwind” around a conductive
spherical particle with a polarized double layer in an
electrolyte solution under the influence of strong
electric field as a part of the mechanism for enhance-
ment of EOF. It is shown schematically in Fig. 8

Ion Exchanger Double

Particl Layer Electrosmotic
article

=

‘ Whirlwind

Induced Bulk vV, __
Charge in ————— v,
Diffuse Layer v

Fig. 8. Schematic illustration of the loci of the induced bulk
charge layer and electrosmotic whirlwind around a highly conduc-
tive spherical ion exchanger particle immersed in an electrolyte
solution of relatively low conductivity under the influence of high
electric field.

where for the sake of illustration, the region where
bulk charge is induced has been enlarged. In reality
its thickness is much smaller than the particle
diameter. It is seen that bulk charge is formed only
upstream of the particle and the downstream side has
only a thin double layer because the normal com-
ponent of the electric field is in the direction away
from the particle.

According to Dukhin and Mishchuk [25,27], the
potential drop across the whole particle including the
double layer and the bulk charge layer, V, is the sum
of three contributions

V=V, +V,+V, (26)

where, V|, V, and V, are the respective potential drops
across the bulk charge layer upstream, across the
particle proper and across the thin double layer
downstream as shown in Fig. 8.

Since the thickness of the double and the bulk
charge layers is expected to be small in comparison
to the particle diameter, the total potential drop, V, is
given by

V=4d,E. (27)

In order to evaluate the EOF under such conditions
we make use of the two assumptions made earlier.
The first assumption is that the particle conductivity
is high enough so that the potential drop across the
particle is a small part of the total potential drop, that
can be expressed as

dP
a'p > a'b<?> (28)

where, o, and ¢, are the conductivities of the
particle and electrolyte medium and 6 is the thick-
ness of the bulk charge layer. As a consequence of
Eq. (28), the potential drop across the particle, V,, is
very small as compared to the total potential drop V.

V,<V. (29)

The second assumption is that the electric field
strength is so high that the potential drop across the
double layer on the downstream side of the particle
is small as compared to the total potential drop

V,=¢, <V. (30)

Combining Egs. (26)—(30), we obtain that
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V,~V=4dE. (31)

Eq. (31) implies that the total potential drop occurs
across the bulk charge layer.

Let us introduce an apparent zeta potential, ¢ ;, to
express the potential drop across the bulk charge
layer, V,, so that

{,=V,=dE. (32)

Assuming that the potential drop, V|, is uniform over
the particle, i.e. the bulk charge layer is thin in
comparison to the particle diameter, the EOF ve-
locity can be expressed as

e B ge E R
u=( ; )(dpE)=( . )(;p). (33)

Since the bulk charge is induced by an excess of
counterions, the EOF velocity as predicted by this
theory and given by Eq. (33) has the same direction
as that would be observed at low electric field
strengths when this effect is absent [25,27].

The extension of the Dukhin’s model for the
packed beds that are used in CEC can be done along
similar lines as earlier. However, since the apparent
zeta potential, ;, under these conditions would be
much larger than the zeta potential of the tube wall,
the wall effect would also be very small resulting in
a flat flow profile with the average EOF velocity
given by

ee,E\ ., (o
<u> =u=( )(Zp)< ) 34)

n 4

According to Dukhin’s model, enhancement of EOF
in CEC would take place only when the conductivity
of the column packing is higher than that of the
stationary phases employed presently. The enhance-
ment of EOF is favored by an increase in both the
conductivity and size of the particles. As illustrated
in Fig. 9 for fixed conductivity of the bulk elec-
trolyte, under any given set of operating conditions a
certain minimum particle conductivity is required to
bring about a non-linear dependence of the EOF
velocity on the electric field. However, upon increas-
ing the particle conductivity at some point, saturation
occurs and further increase does not produce any
enhancement in the EOF velocity. The effect of the
particle size on the enhancement of EOF is illus-
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Fig. 9. Plots of the average EOF velocity versus the electric field
strength according to Eq. (34) with the conductivity ratio of the
packing particle and the bulk electrolyte as the parameter.
Conditions; d, =5 pm, =500 A, {,=&,=100 mV, £=80; ¢,=
885107 CV 'm 'and n=10"kgs 'm™".

trated in Fig. 10, which shows that the formation of
the bulk charge and the onset of “electrosmosis of
second kind” occurs with large particles in an
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Fig. 10. Plots of the average EOF velocity versus the electrical
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electric field that is much weaker than that required
with smaller particles.

5. Conclusions

A solid theoretical basis for the flow field of EOF
in porous media has yet to be established. The two,
rather greatly simplified approaches reviewed above
represent, to our best knowledge, the only theoretical
framework available as a starting point for further
theoretical developments and experimental design as
well. The combination of the Smoluchowskian
theory with the capillary bundle model for treating
EOF in packed capillaries is beguilingly simple. Yet,
it has not been confirmed experimentally as demon-
strated by the present controversy about the effect of
the particle size on the magnitude of EOF. In view of
Overbeek’s model EOF should not be dependent on
the particle diameter of the packing as long as the
double layer thickness is less than a tenth of the
radius. It shall require carefully designed experi-
ments to test the validity of the theoretical predic-
tions presented above. If ‘“‘electrosmosis of the
second kind” could be brought about in electro-
chromatographic systems of practical significance, it
would greatly facilitate rapid separations and the use
of long columns that allow the generation of a large
number of theoretical plates. We assumed so far that
the dependence of the plate height in CEC on the
EOF velocity is subject to the van Deemter or Knox
equation, but this requires further experimental
studies and validation. Some findings would suggest
that these equations have to be corrected in order to
take into account the reduced band spreading due to
the interparticular electrosmotic flow field in CEC
and the enhanced intraparticular mass transfer.

6. Symbols and abbreviations

c Concentration of the positive ions as a
function of distance from the surface

¢ Concentration of the negative ions as a
function of distance from the surface

<, Bulk concentration of the ions in the
electrolyte

d Particle diameter of the column packing

D" Diffusivity of the positive ions in the bulk
electrolyte

D~ Diffusivity of the negative ions in the bulk
electrolyte

E Applied electric field in the axial direction

F, Net drag force acting on an annular ele-
ment

F, Net viscous force acting on an annular
element

I Bessel’s function of the zeroth order

I, Bessel’s function of the first order

j Current flowing through the packed col-
umn in CEC

ir Flux of counterions through a packing
particle

js Flux of counterions tangential to the pack-

ing particle

k Boltzmann constant

r Coordinate specifying distance from the
center of the packed column

R Inner radius of the capillary

T Absolute temperature of the electrolyte

u, EOF velocity at the particle surface

u, Local EOF velocity at the particle surface
in the packed bed

u, EOF velocity at the capillary wall

U, Local EOF velocity generated in a capil-

lary packed with neutral particles by the
charged wall

Vv Total potential drop across the particle as
well as the double and bulk charge layers

Vi Potential drop across the bulk charge layer
upstream

V, Potential drop across the particle proper

A Potential drop across the double layer

V. Total column volume

Ve Volume of the interstitial space

x Coordinate specifying distance from the
surface of the particle

x* Distance of the outer boundary of the zone

of concentration polarization from the par-
ticle surface

Greek letters

« Dimensionless packing parameter

B Dimensionless packing parameter

é Thickness of the bulk charge layer

&’ Thickness of the electroneutral diffusion
layer
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£, Total porosity of the column

e Dielectric constant of the medium

£, Permittivity of the vaccum

K Reciprocal of thickness of the double layer
7 Viscosity of the bulk electrolyte

P Induced bulk charge density

o Conductivity of the packed column with
the electrolyte

a0, Conductivity of the electrolyte

o, Conductivity of the ion-exchanger packing
without electrolyte

Y Electrical potential as a function of the
distance from the particle surface

¢, Zeta potential at the particle surface

4 ; Apparent zeta potential at the particle
surface

- Zeta potential at the capillary wall

Acronyms

CEC Capillary electrochromatography

CZE Capillary zone electrophoresis

EOF Electrosmotic flow

HPLC  High-performance liquid chromatography
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